Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

L.P. Panych1,3, B. Madore1,3, W.S. Hoge1,3, R.V. Mulkern2,3

1Brigham and Women’s Hospital, Radiology Department, Boston, MA
2Children’s Hospital, Radiology Department, Boston, MA
3Harvard Medical School, Boston, MA

Presented at ISMRM 19th Scientific Meeting and Exhibition, Montreal, 2011
Goals

• Improve spatial localization in MR spectroscopic imaging (MRSI) by eliminating truncation (or ringing) artifact.

• Increase speed by employing an echo-planar approach to encode one spatial dimension.

• Investigate the use in MRSI of a resolution enhancement method (super-resolution).
Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice\(^1\) in 2 dimensions
- Implement Echo-Planar Spectroscopy\(^2\) in 3rd dimension.
- Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution\(^3\)).

Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice1 in 2 dimensions
- Implement Echo-Planar Spectroscopy2 in 3rd dimension.
- Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution3).

What is PSF-Choice?

A method that **improves** the point-spread-function (PSF) and **eliminates** ringing artifact.

1. PSF of standard phase encoding
2. PSF with PSF-Choice

Results in intra-voxel spectral contamination

FWHM (resolution) of both PSFs

Support of PSF 1

Support of PSF 2

How is PSF-Choice implemented?

1. Replace the standard 90° RF excitation pulse with a train of RF sub-pulses.
2. Change amplitudes of the sub-pulses on each excitation according to a weighting scheme that determines the resultant PSF.
Example: 4x4 PSF-Choice Encoding

Each RF sub-pulse samples a different location in excitation k-space.

The standard RF excitation pulse is replaced with a train of 4 sub-pulses in our scheme. Amplitudes of the sub-pulses are changed on each excitation according to Gaussian k-space weighting.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.

- RF
- G_x
- G_y
- K_x Encode: 2
- K_y Encode: 3

Excitation k-space
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
Two-dimensional PSF-Choice Encoding

With each excitation a new set of 4 points in excitation k-space is sampled.
2D PSF-Choice Reconstruction

When combining the results from all excitations, the net effect is excitation of a Gaussian-shaped ‘virtual profile’ in the PSF-encoding directions, X and Y.
2D PSF-Choice Reconstruction

By applying a linear phase ramp to data from the different excitations, the virtual profile can be shifted within the field-of-view.
2D PSF-Choice Reconstruction

For a $N \times N$ PSF-Choice encoding, spectra from $N \times N$ different locations can be reconstructed. The effective PSF is determined by the shape of the virtual profile - e.g., a Gaussian PSF in our case.
PSF-Choice Encoding vs Fourier Encoding: Results in Phantom

- GE 3T Signa System (15M4).
- 3D MRSI acquisitions:
 - PSF-Choice encoding in x and y
 - EPSI in z.
- GE Quadrature head coil.
- GE MRS phantom.
PSF-Choice Encoding vs Fourier Encoding

8 x 8 images of H$_2$O peak. *Selected volume is smaller than voxel size*
Excite a small volume and acquire multiple image sets
with 1/4-voxel shifts in each direction (4x4 shifts = 16 acquisitions)
Mapping the Point-Spread-Function

Excite a small volume and acquire multiple image sets with 1/4-voxel shifts in each direction (4x4 shifts = 16 acquisitions)
Mapping the Point-Spread-Function

Excite a small volume and acquire multiple image sets with 1/4-voxel shifts in each direction (4x4 shifts = 16 acquisitions)
Mapping the Point-Spread-Function

Excite a small volume and acquire multiple image sets with 1/4-voxel shifts in each direction (4x4 shifts = 16 acquisitions)
Mapping the Point-Spread-Function

Excite a small volume and acquire multiple image sets with 1/4-voxel shifts in each direction (4x4 shifts = 16 acquisitions)
Mapping the Point-Spread-Function

Excite a small volume and acquire multiple image sets with 1/4-voxel shifts in each direction (4x4 shifts = 16 acquisitions)
Data from the 16 image sets were interleaved (shifts of 1/4 pixel in two directions). Result forms high-density image of ‘point’ - PSF of the imaging method.
Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice\(^1\) in 2 dimensions
- Implement Echo-Planar Spectroscopy\(^2\) in 3rd dimension.
- Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution\(^3\)).

Improved spatial localization in 3D MRSI with a sequence combining PSF-Choice, EPSI and a resolution enhancement algorithm

Echo-Planar Spectroscopic Imaging (EPSI)

A method that encodes 1 dimension in a single shot and increases speed significantly

PRESS compared to EPSI with PSF-Choice

H₂O images

- **FOV** = 24x12 cm
- **Acquisition Matrix**
 - PRESS:
 - 32x16x512 - 1 average
 - EPSI & PSF-Choice:
 - 32x16x512 - 32 averages
- **TE/TR** = 85/1000 msec
- **Total acquisition time:**
 - 32x16 shots X 1 sec = 8 minutes 32 seconds
 (for both methods)
Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice\(^1\) in 2 dimensions
- Implement Echo-Planar Spectroscopy\(^2\) in 3rd dimension.
- Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution\(^3\)).

Resolution Enhancement
(or ‘super resolution’)

- Combine multiple low-resolution datasets with sub-pixel shifts to enhance resolution.
- PSF-Choice is suitable for resolution enhancement approaches because the PSF contains higher spatial frequency information.
- Standard Fourier encoded data contains no additional spatial frequency information.

Irani and Peleg. 10th Int Conf Pattern Recogn 1990; 2:115-120.
Resolution Enhancement: Algorithm

Initialize:
Set high-resolution estimate, Fe, equal to the interleaved low-resolution datasets.

Low resolution estimate, F, set equal to last high resolution estimate convolved with the assumed PSF.

Compute difference, Fd, between the measured low-resolution data and the low-resolution estimate.

Update high resolution estimate by adding the error, Fd, convolved with a back-projection kernel, BP.

\[Fe_0 = Fl \]

\[F = Fe_n \ast PSF \]

\[Fd = Fl - F \]

\[Fe_{n+1} = Fe_n + Fd \ast BP \]

Irani and Peleg. 10th Int Conf Pattern Recog 1990; 2:115-120.
Resolution Enhancement: Phantom Results

Standard Phase Encoded MRSI datasets: H\textsubscript{2}O images.

1 Acquisition | 4 Acquisitions | Enhanced

PSF-Choice Encoded MRSI datasets: H\textsubscript{2}O images.

1 Acquisition | 4 Acquisitions | Enhanced

Data was acquired using GE ‘resolution’ phantom.
Four acquisitions with 1/2 pixel shifts in x and y.
Resolution Enhancement: With noisy MRSI data

FOV = 80mm³
Press voxel = cube; 20mm³

Acquisition matrix = 8x8x8

Four acquisitions:
Half pixel shifts in two directions, reconstructed and combined using super-resolution algorithm.

Citrate image: 2.32 to 2.56 ppm.

Data acquired using ‘prostate’ phantom (choline, creatine and citrate solution).
Summary and Conclusions

- PSF-Choice encoding gives spectroscopic images free of truncation artifact.
- Use of EPSI to encode one direction reduces acquisition time: e.g., 24x12x8 matrix, 4 averages in 6min 24sec (TR=1sec).
- By repeating low resolution acquisitions with 1/2 pixel shifts in the PSF-Choice directions (in place of 4 simple averages), resolution enhancement methods can be applied.
- Low-resolution, averaged data is still available if high-resolution result is too noisy.
Acknowledgements

The authors wish to acknowledge the support of NIH R21/R33-CA110092 and NIH P41-RR019703.