SPECIAL ARTICLE

Technology for Innovation in Radiation Oncology

Indrin J. Chetty, PhD,* Mary K. Martel, PhD,† David A. Jaffray, PhD,‡ Stanley H. Benedict, PhD,§ Stephen M. Hahn, MD,‖ Ross Berbeco, PhD,¶ James Deye, PhD,# Robert Jeraj, PhD,** Brian Kavanagh, MD, MPH,†† Sunil Krishnan, MD,‖‖ Nancy Lee, MD,‖‖‖ Daniel A. Low, PhD,§§ David Mankoff, MD, PhD,¶¶ Lawrence B. Marks, MD,¶¶¶ Daniel Ollendorf, PhD, MPH,## Harald Paganetti, PhD,*** Brian Ross, PhD,### Ramon Alfredo C. Siochi, PhD,#### Robert D. Timmerman, MD,##### and John W. Wong, PhD######

*Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan; †Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; ‡Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Hospital, Toronto, Ontario; §Department of Radiation Oncology, University of California — Davis Cancer Center, Sacramento, California; ‖Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; ‖‖Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts; ¶Radiation Research Programs, National Cancer Institute, Bethesda, Maryland; **Department of Medical Physics, University of Wisconsin, Madison, Wisconsin; ††Department of Radiation Oncology, University of Colorado, Aurora, Colorado; †‡Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; †§Department of Radiation Oncology, University of California — Los Angeles, Los Angeles, California; †‖Department of Radiology, University of Washington Medical School, Seattle, Washington; ¶¶Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina; ¶¶¶Institute for Clinical and Economic Review, Boston, Massachusetts; ***Department of Radiation Oncology, Massachusetts General Hospital, Proton Therapy Center, Boston, Massachusetts; †††Department of Radiology, University of Michigan Health Systems, Ann Arbor, Michigan; †‡‡Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia; †§§Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, Texas; and †¶¶Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland

Received Feb 11, 2015, and in revised form Jun 30, 2015. Accepted for publication Jul 6, 2015.

Reprint requests to: Mary K. Martel, PhD, Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030. Tel: 713-563-2530; E-mail: mmartel@mdanderson.org

Conflict of interest: none.

Acknowledgment—The authors thank the National Cancer Institute for their support of the meeting in providing resources and hosting the meeting.

at the National Institutes of Health. They also thank the American Society for Radiation Oncology and the American Association of Physicists in Medicine for their financial assistance, without which this meeting would not have been possible.
Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. © 2015 Elsevier Inc. All rights reserved.

Introduction

Innovative technology plays a vital role in improving the quality of care and outcomes for patients receiving radiation therapy. Technological advances in radiation oncology, and the associated ability to accurately target tumors with highly focused radiation, have led to improvements in local control and survival for certain types of cancers. Recent examples include the use of stereotactic body radiation therapy (SBRT) for the treatment of early-stage, non-small cell lung cancer (NSCLC), where the hypofractionated dose regimens delivered in ≤ 5 fractions have significantly improved local control and overall survival (1). Indeed, it has been argued that the success associated with SBRT-based treatment of early-stage NSCLC might well be due to the substantially high ablative doses delivered to tumors under image directed radiation therapy (IGRT), which has enabled highly focused and accurate targeting (2). The success of SBRT for early-stage lung cancers and the emergence of this treatment paradigm for other treatment sites might well have an important influence on current and future clinical practice (3).

In light of the positive influence of innovative technology in radiation oncology, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) convened a workshop entitled “Technology for Innovation in Radiation Oncology.” The workshop focused on the challenges posed by new technologies, addressed the state of the science for several disease sites, discussed clinical trials for advanced technology, and reviewed the future promise and potential pitfalls of emerging, innovative technologies.
The goal of the workshop was to help guide innovative technology-based research for radiation oncology. The following topics were included: innovative treatment delivery technology, advances in imaging for quantitative and validated treatment design, oncology informatics, and evidence building. Although several other novel research topics are being investigated in the field of radiation oncology, the goal of this article is to provide a summary of the central themes covered during the lectures of the workshop (Table 1).

Innovative Treatment Delivery Technology

Innovative technology is an important element in improving the performance and quality of care in radiation oncology. Examples of innovations in delivery technology include advancements in hardware, improvements in software and algorithms to facilitate fast computations and enable automation, and the development of information technologies. Hardware advances enable new multimodal machines that fuse high-performance imaging modalities and advanced radiation delivery methods, such as in-room, coupled magnetic resonance imaging (MRI) and treatment delivery systems, which allow for real-time monitoring of dose delivery to the target and normal tissues. Such devices offer the potential to further reduce planning margins and potentially escalate the dose to the target, thereby improving the therapeutic ratio. There are also emerging technologies, such as targeted nanoparticle systems, and other therapies focused on patient-specific “personalized” biological targets, that have been shown to work synergistically with radiation to increase tumor cell kill (4, 5).

Computational advances

Technological advances in software and hardware, focusing on high-speed calculations and automation of processes, will improve the efficiency and quality of patient treatments. The use of “fast physics” calculations implemented through the use of graphics processor units, cloud-based methods, and parallel processing will facilitate rapid computation and accumulation of dose in deforming structures for efficient treatment adaptation, prediction of x-ray scatter, modeling of electron transport in magnetic fields, and other relevant processes (6). Advances in interface technologies that bury the underlying complexity of these computations serve as a pillar for automation. Studies have shown that the development of automated interfaces, which minimize the need for manual, human-driven interaction at the treatment console, reduces human errors and improves treatment quality (7). Automation of treatment planning processes has been shown to result in clinically acceptable plans at significantly reduced times, offering the potential for reduced effort, complexity, and cost associated with more advanced manual techniques (8). The emergence of programming and communication constructs, in addition to DICOM radiation therapy (eg extensible markup language [XML]), will facilitate better integration of planning, delivery, and patient electronic medical record systems and will enable advanced computer-controlled delivery, incorporating “on the fly” plan changes (6). The adoption of open source models for innovation (9) (ie automation and

Table 1 Workshop Lectures and Participants

<table>
<thead>
<tr>
<th>Lecture Title</th>
<th>Presenter/s</th>
<th>Moderator/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of Technology on RT Field: Current Status</td>
<td>Stephen Hahn, MD</td>
<td>Stephen Hahn, MD, Mary K. Martel, PhD, and David Jaffray, PhD</td>
</tr>
<tr>
<td>Impact of Technology on RT Field: Vision for the Future</td>
<td>David Jaffray, PhD</td>
<td>Yue Cao, PhD, and Nancy Lee, MD</td>
</tr>
<tr>
<td>Session 1: Image-based Metrics (Biomarkers) for Planning and Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular/Functional Imaging (PET)</td>
<td>David Mankoff, MD</td>
<td>Indrin J. Chetty, PhD</td>
</tr>
<tr>
<td>Functional MR Imaging</td>
<td>Brian Ross, PhD</td>
<td></td>
</tr>
<tr>
<td>Session 2: Novel High-Performance RT Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Simulators, MR Treatment Machines</td>
<td>Daniel Low, PhD</td>
<td>Brian Kavanagh, MD, MPH, and Stanley Benedict, PhD</td>
</tr>
<tr>
<td>High-performance Particle Therapy</td>
<td>Harald Paganetti, PhD</td>
<td></td>
</tr>
<tr>
<td>Will Tomorrow’s RT Devices (Photon) Be Open Standards Platforms for Innovation?</td>
<td>Ramon Alfredo Siochi, PhD</td>
<td></td>
</tr>
<tr>
<td>Session 3: Clinical Trials: Incorporating and Testing Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Trials That Incorporate Technology</td>
<td>Robert Timmerman, MD</td>
<td></td>
</tr>
<tr>
<td>Image-Guided Radiobiology Clinical Trials</td>
<td>Robert Jeraj, PhD</td>
<td></td>
</tr>
<tr>
<td>Session 4: Patient Outcome and Technology Technology Assessment</td>
<td>Daniel Ollendorf, MD, MPH</td>
<td>Stephen Hahn, MD, Mary K. Martel, PhD, and David Jaffray, PhD</td>
</tr>
<tr>
<td>IT Innovation Opportunities, Including Decision Support, Computer-Aided Theragnostics, Bioinformatics</td>
<td>John Wong, PhD</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: IT = information technology; MR = magnetic resonance; PET = positron emission tomography; RT = radiation therapy.
integration of human, software, and machine processes) will likely lead to a future generation of treatment systems viewed as specialized computers, rather than the current model comprising delivery devices with attached computers. Tools for automation and reduction in complexity will need to be properly validated before they are used routinely in the clinic.

High-performance IGRT systems

Machines incorporating multimodal treatment and imaging functionalities (eg MRI) to perform real-time imaging during treatment (MRgRT) are likely to improve the precision and accuracy of treatments (10). Soft tissue contrast with MRI is inherently better than that with computed tomography (CT). Low field strength MRI (0.35 T) coupled with cobalt 60–based treatment sources is clinically available, and MRI-enabled linear accelerators are being developed. Integrated MRI, in addition to being a nonionizing imaging modality, allows for real-time management of tumor motion and other geometric changes during treatment and subsequently “dose of the session” computation at the treatment console (10). Challenges to the development of these technologies include geometric distortions caused by the system and by the patient (susceptibility and chemical shift artifacts), influence of the magnetic field on dose deposition resulting from the recoil of electrons in a magnetic field, and safety related to proper patient screening (11).

High-performance particle therapies

Machines using particles (eg protons or heavier ions) reduce the total energy deposited in the patient (for the same treatment dose) compared with other types of external beam photon treatments independently of any planning or delivery technique (12, 13). Although we do not fully understand the clinical consequence of the reduced integral dose, evidence suggests that particle therapies are clinically beneficial for pediatric patients, for young adults, and for patients who have tumors of the central nervous system (14). Opportunities for future research include the following areas: reduction of range uncertainties through the use of Monte Carlo–based dose calculation methods (15) combined with better imaging for planning (eg dual energy CT or proton CT) (16); robust treatment planning using intensity modulated particle therapy (IMPT), which will make plans less sensitive to uncertainties (17); in-vivo range verification, currently being performed with the use of positron emission tomography (PET) or prompt γ detection methods (18); biological effectiveness of protons and heavy ions with respect to tumors and normal tissues (12); and clinical studies that assess the effectiveness and/or efficacy of protons (14) and carbon ions (19) compared with photons for different treatment sites (17).

Nanotechnologies

Nanoparticle therapies for combination with radiation are being developed to increase the effectiveness of radiation and thereby enhance tumor cell kill (20). Research is centered in the following areas: image-guided drug delivery to radiation-induced receptors, in which different peptides, antibodies, and adenovirus-mediated gene vectors are coupled with nanoparticle systems to perform simultaneous imaging and targeting of cancers (21); deep-penetrating triggered release nanoparticles as tumor radiosensitzers, in which delivery of nanoparticles using thermosensitive liposomes has been shown to enhance deep penetration of nanoparticles when triggered by hyperthermia (22); and gold nanoparticles as vascular disrupting agents during external beam radiation therapy; it has been hypothesized that MV irradiation of targeted gold nanoparticles will cause localized destruction of tumor blood vessels (endothelium) leading to subsequent disruption of tumor viability (23, 24).

Despite the promise afforded by nanoparticle systems, challenges exist (25): toxicity is a concern, and nanoparticles (even gold-based systems) will need to be extensively tested for safety and biocompatibility before being used in human trials; stability in size and form of nanoparticles or their delivery vehicles—if particles lose their form or cluster together in circulation and are opsonized by plasma proteins, their delivery to tumors and targeting efficiency may be significantly dampened; potency—the amount of agent taken up in the target to observe an improvement in therapy needs to be validated; distribution: tissue penetration of the stimulating agent—if the nanoparticle stimulating agent does not penetrate deeply in tissue, the clinical feasibility may be severely limited except for those applications that do not require tissue penetration (eg targeting tumor vasculature); targeting specificity—whereas passive targeting, relying on the intrinsic enhanced permeability and retention properties of tumors is an effective method for preferential nanoparticle accumulation in the tumor, active targeting through ligands, peptides, or other methods has been shown to provide greater specificity for some situations; and feasibility—clinical workflow and costs, among other factors, will need to be addressed.

Advances in Imaging

The role of imaging, in particular the transition from anatomical to functional imaging for better assessment of the target and sparing of surrounding organs, represents a major technological innovation in radiation oncology (26). The concept of the biological target volume (BTV), as proposed by Ling et al (5), provides a rationale for the development of functional/molecular imaging relevant to tumor response to radiation therapy. Ling et al hypothesized that the BTV can be derived from images that reflect biological processes and that their use may improve target delineation and direct nonuniform dose
delivery. Functional imaging of tumors and normal tissues using MRI, PET, and other modalities is likely to play a central role in this regard. The integration of imaging and panomics or totalomics (a term used to refer to the range of molecular biology technologies, including, for example, genomics, proteomics, metabolomics, and transcriptomics, or the integration of their use) in combination with radiation therapy is an area of research likely to facilitate tailored therapies in support of personalized cancer medicine (27). Summaries relevant to the pivotal role of imaging are provided.

Positron emission tomography

The role of PET technology is central to the following areas: localization of the gross tumor volume in radiation therapy treatment planning; characterization of tumor sites, particularly for features such as hypoxia that may have an impact on treatment response and can therefore be incorporated into a BTV (5); measurement of response to radiation therapy early in the course of treatment and therapy adaptation, as appropriate, based upon early response. Key areas for the development and application of new PET biomarkers/probes will be to develop and implement probes to detect and localize cancers (such as prostate cancer) not well visualized by FDG-PET (examples include labeled choline agents and amino acid tracers) (28); measurement of regional tumor hypoxia to construct BTVs that can be used to direct treatment planning based on hypoxia (examples include 18F-FMISO and 18F-EF5) (29); measurement of cellular proliferation to assess early response to treatment (examples include 18F-FLT, 18F-FMISO) (30); imaging of normal tissues using specific biomarkers (eg indocyanine green for assessment of radiation-induced liver damage) to incorporate healthy tissue functional reserve into adaptive radiation therapy models (31). Proper validation and quantification of these probes as tools for directing radiation therapy will be essential before the initiation of prospective multicenter clinical trials (28). Cooperative group clinical trials using concurrent chemoradiation for patients with locally advanced stage lung cancer (27, 28), among others, have been initiated to investigate the role of imaging during treatment. These trials use FDG PET/CT imaging to assess tumor response during treatment and subsequent plan adaptation, with the goal of isotoxic dose escalation to the tumor.

Magnetic resonance imaging

Magnetic resonance imaging plays an important role during patient simulation because of enhanced soft tissue contrast relative to CT. Patient models are likely to be improved with MRI as a result of more accurate delineation of tumor margins and identification of normal tissue boundaries, which will potentially lead to better planning margin design (32). Consequently, it will be possible to generate treatment plans with higher therapeutic ratios. Challenges to enable the widespread implementation of MR simulation include generation of electron density distributions for dose calculations, planar reference images for localization using bony landmarks, and improvement of spatial integrity (32, 33). MRI has also been demonstrated to be an effective modality for evaluation of early-stage and late-stage tumor response and the effects of radiation on normal tissue toxicity (34). This information can in turn be used to adapt treatment plans to optimize the therapeutic ratio over the course of therapy. Key areas for development include careful consideration of the timing of image acquisitions because of the dynamic tumor changes that occur over the course of treatment (35); the development of more sensitive imaging tools to enable cancer stem cell imaging (36); and the investigation of image monitoring protocols of acute and chronic normal tissue toxicity over time by scanning with appropriate and predesignated intervals, which would allow earlier intervention for long-term preservation of tissue function.

Personalized cancer medicine and radiation therapy

Several opportunities exist in the field of panomics and in the assimilation of imaging and panomics to quantify the involvement of the functions, structures, and interactions of DNA-level molecules in the development of cancer. The integration of panomics into radiation medicine will make possible the adaptation of therapy for individual patients and will thereby improve clinical outcomes. Examples include the improvement in outcome and potential to deescalate radiation therapy for HPV-positive patients with oropharyngeal cancers (37) and the ability to personalize radiation treatments based on subtyping (eg luminal A, luminal B, and HER-2-neu status) for patients with breast cancers (38).

Oncology Informatics

In radiation oncology, we have been collecting digital structured patient information for use in learning and advancing care through Big Data initiatives. Our existing electronic infrastructure captures many of the dosimetric and outcome data, which theoretically could be retrieved and aggregated for analysis. With additional efforts on integrating structured data collection into the clinical workflow, there is a great opportunity to generate complete data sets about the care delivered to patients and their outcomes.

A major hurdle confronting the effective use of the Big Data sets is the enormous volume, which impedes analyses and data exchange. With clinical data, one must try to identify the types of questions that researchers might ask in the future, determine the type of data required, and balance data collection efforts with practicality in the clinical
workflow. Given the advances in imaging and detection technologies in the laboratories and clinics, the Big Data challenges will only intensify in the future. There is a lack of infrastructure to support and sustain efficient learning from one’s own experience or that from other institutions. The need for new informatics approaches to address Big Data is evident in the new initiatives by the NIH (39), the NSF (40), and others and in this technology-focused, translational research workshop sponsored by NCI/ASTRO/AAPM. In response to these efforts, a fundamentally new informatics infrastructure and methodology to promote data sharing, decision support, and reuse of data is needed for a data sharing model that more seamlessly supports continuous quality improvement and comparative effectiveness research (41).

These developments in medical and bioinformatics demonstrate an important and well-aligned research area critical to advancing the role of radiation therapy in cancer control. Integrating radiation oncology databases with the broader domains of oncology is a key element. Three notable emerging informatics efforts that shed light on this effort include the National Radiation Oncology Registry (NROR) initiative championed by ASTRO (42), the euroCAT initiative for Rapid Learning (43), and the OncoSpace initiative for data sharing and decision support (44). The approaches being explored in these efforts and their value to oncology care and research should be monitored and highlighted across the field. The following areas of oncology informatics have been identified as having the greatest potential for impact on scientific, clinical research, and ongoing technology development in radiation oncology.

1. Integrating radiation oncology databases across the discipline will facilitate science and elevate the quality of care (45). The creation of a Virtual Clinical Trials Group that enables federated databases at different institutions for conducting cooperative research is a consideration. Sharing practices and outcomes will permit high mean and tight variance in clinical practice and will improve quality (46).

2. Tools need to be created and made available for patients and physicians to discuss treatment options, as recommended by the Patient-Centered Outcome Research Institution. Such an approach will drive the development of metatreatment planning systems, in which one prescribes an outcome, not a treatment (eg specification of a 95% local control rate at 5 years with 5% grade 3 or more dyspnea) (6, 47). This could also be expanded beyond radiation oncology.

3. Expertise in the informatics domain among radiation oncology professionals needs to be developed (6). The most suitable candidates with the appropriate skill sets and multidisciplinary knowledge to succeed in this space are likely medical physicists or physicians with strong computational backgrounds. Training grants for developing programs for oncology informatics will provide these individuals with the knowledge needed to support informatics research initiatives.

4. Informatics tools need to be developed to support the monitoring of the quality of oncology care at the point(s) of delivery (48). Real world—based evidence approaches are emerging in other domains and will also benefit the field of radiation oncology. The often-quoted statements that 5% differences in dose result in significant changes in tumor control and normal tissue complication probabilities will be reinforced or challenged through collecting and sharing data from the entire clinical process.

Methods of Building Evidence

The field of radiation oncology needs to innovate in our approach to harnessing the power of technological innovation while also building evidence. Innovative approaches to demonstrate clinical efficacy and effectiveness, and safety, were identified as an important area of research to be included during the discovery and testing of new technologies. The following recommendations were provided.

The next 5 years will likely see the requirement that technological innovations are assessed with approaches that have long been in place for oncology drugs. Implementation of new technologies, including reimbursement, will require high levels of evidence demonstrating efficacy and/or effectiveness, safety, and value (49). Innovators and early adopters will be expected to perform formal phase 1/2 trials intended to define the operating characteristics and early outcome parameters. For technologies further along in the pipeline, pragmatic early majority users will be required to perform high level phase 3 comparative trials. In cases where such trials cannot be practically performed, other methods, including observational studies extracting information from large electronic medical record databases, will be necessary. In general, these trials must maintain the “4 pillars” of legitimate clinical research: pertinence (testing within real-world circumstances), validity (conclusions must avoid bias), reliability (results must be reproducible), and generalizability (results can be considered mainstream).

Although established techniques in clinical research will not be completely replaced by modern schemes, trials of new technology will require some design modification compared with drug discovery trials (50). For example, phase 1 trials may require a higher number of patients per dose level, and some may require a phase 1/2 design that simultaneously studies toxicity and efficacy. In-silico trials will facilitate the study of more difficult clinical scenarios, such as the initial testing of very expensive technologies (eg heavy ions) or the comparison of existing and evolved similar technologies (51). Clinical trial endpoints will change from traditional metrics, such as local control, dose
indices, or performance characteristics, to patient-oriented endpoints, such as survival, patient-reported outcomes, and cost effectiveness.

Equipment vendors have historically developed and implemented technology in conjunction with physicists and limited early adopters at academic centers, with studies ending at performance and use evaluations. Similar to the pipeline of new pharmaceuticals, the costs of clinical testing must be incorporated into the overall cost of research and development to address the new requirements of acceptance of technology (52).

Comparative effectiveness research is often performed after a technological innovation has become widespread. Instead, integration of evidence development earlier in the innovation cycle, in silico, is recommended (53).

Radiation therapy has its own unique set of evidentiary challenges. One is that the historical evidence base has consisted mainly of case-based series from single research centers. Increasing use of randomized controlled trials, particularly pragmatic trials, and high-quality comparative observational designs are therefore recommended (54), particularly in clinical areas where there remains sufficient equipoise around the best treatment option, such as prostate cancer (55).

Because the historical evidence base has raised concerns regarding publication bias (ie the propensity to publish only studies with positive results), radiation oncology-related journals should consider modifying disclosure requests to include attestations that all relevant clinical data have been submitted for publication. Examples of approaches to reduce publication bias during the review process have also been reported (56).

Comparative studies are often short-term in nature and tend not to capture the impact of technical innovation. ASTRO and AAPM should continue (and expand, if necessary) their support of the development of multicenter registries to capture standardized clinical and economic data over the longer term. Such registries will garner the necessary wealth of information about treatment protocols and devices to examine the impact of innovation on outcomes (57).

Evidence building to measure efficacy and effectiveness for radiation therapy is clearly linked to oncology informatics (41); in the long term, broader oncology efforts should be included (58), such as radiomics, genomics, radiogenomics (59), molecular targeted therapy, and next-generation pathology.

Conclusion

Technological advances and the linkage to improving patient outcomes within radiation oncology were the topics highlighted during the NCI/ASTRO/AAPM-sponsored workshop on Technology for Innovation in Radiation Oncology. In addition to the more traditional domains of dose delivery, advances in imaging, nanotechnology, and more recently oncology informatics and evidence building were identified as potential areas for further research investment. Continued progress in the development of imaging of biomarkers, the field of panomics, and the integration of these studies with innovative technological advances in radiation oncology will likely accelerate the development of personalization and adaptation of cancer therapy. This, in concert with data collection and analysis through advances in oncology informatics, will enable us to build evidence and answer important questions about the impact of the technology, for instance by using novel in silico approaches, which assess effectiveness during the development phase. In summary, progress in the field of radiation oncology demonstrates that technological advances can lead to improvement in patient outcomes, and further investment is needed in medical physics and radiation oncology research to address major challenges. The field is encouraged to broaden its efforts in technological development to embrace the powerful field of informatics in such a manner that these innovations can be placed in the broader context of personalized cancer medicine and evidence building.

References

