Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

L.P. Panych^{1,3}, B. Madore^{1,3}, W.S. Hoge^{1,3}, R.V. Mulkern^{2,3}

¹Brigham and Women' s Hospital, Radiology Department, Boston, MA ²Children' s Hospital, Radiology Department, Boston, MA ³Harvard Medical School, Boston, MA

Presented at ISMRM 19th Scientific Meeting and Exhibition, Montreal, 2011

Goals

- Improve spatial localization in MR spectroscopic imaging (MRSI) by eliminating truncation (or ringing) artifact.
- Increase speed by employing an echo-planar approach to encode one spatial dimension.
- Investigate the use in MRSI of a resolution enhancement method (super-resolution).

Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice¹ in 2 dimensions
- Implement Echo-Planar Spectroscopy² in 3rd dimension.
- Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution³).
 - 1. Panych et al. Magn Reson Med 2005; 54(1):159-68.
 - 2. Posse et al. Magn Reson Med 1995; 33(1):34-40.
 - 3. Irani and Peleg. 10th Int Conf Pattern Recogn 1990; 2:115-120.

Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice¹ in 2 dimensions
 - Implement Echo-Planar Spectroscopy² in 3rd dimension.
 - Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution³).
 - 1. Panych et al. Magn Reson Med 2005; 54(1):159-68.
 - 2. Posse et al. Magn Reson Med 1995; 33(1):34-40.
 - 3. Irani and Peleg. 10th Int Conf Pattern Recogn 1990; 2:115-120.

What is PSF-Choice ? A method that <u>improves</u> the point-spread-function (PSF) and <u>eliminates</u> ringing artifact.

Panych et al. Magn Reson Med 2005; 54(1):159-68.

How is PSF-Choice implemented ?

- 1. Replace the standard 90° RF excitation pulse with a train of RF sub-pulses.
- 2. Change amplitudes of the sub-pulses on each excitation according to a weighting scheme that determines the resultant PSF.

How is PSF-Choice

Panych et al. Magn Reson Med 2005; 54(1):159-68.

Example: 4x4 PSF-Choice Encoding

The standard RF excitation pulse is replaced with a train of 4 subpulses in our scheme. Amplitudes of the sub-pulses are changed on each excitation according to Gaussian k-space weighting.

Two-dimensional PSF-Choice Encoding

Two-dimensional PSF-Choice Encoding

Two-dimensional PSF-Choice Encoding

Two-dimensional PSF-Choice Encoding

Two-dimensional PSF-Choice Encoding

G_x

Gy

With each excitation a new set of 4 points in excitation k-space is sampled.

Excitation k-space

k_x

k,

Two-dimensional PSF-Choice Encoding a b c d RF G_x G_y G_y

With each excitation a new set of 4 points in excitation k-space is sampled.

k_x

2D PSF-Choice Reconstruction

When <u>combining the results</u> from all excitations, the <u>net effect</u> is excitation of a Gaussian-shaped <u>'virtual profile'</u> in the PSF-encoding directions, X and Y.

2D PSF-Choice Reconstruction

By applying a <u>linear phase ramp</u> to data from the different excitations, the <u>virtual profile can be shifted</u> within the field-of-view.

2D PSF-Choice Reconstruction

For a NxN PSF-Choice encoding, spectra from NxN different locations can be reconstructed. The effective PSF is determined by the shape of the <u>virtual profile</u> - e.g., a <u>Gaussian PSF</u> in our case.

PSF-Choice Encoding vs Fourier Encoding: Results in Phantom

- GE 3T Signa System (15M4).
- **3D MRSI acquisitions:**
 - PSF-Choice encoding in x and y
 - EPSI in z.
- GE Quadrature head coil.
- GE MRS phantom.

PSF-Choice Encoding vs Fourier Encoding

8 x 8 images of H₂O peak. Selected volume is smaller than voxel size

Mapping the Point-Spread-Function

Mapping the Point-Spread-Function

Mapping the Point-Spread-Function

Mapping the Point-Spread-Function

Experimentally Mapping the Point-Spread-Function

Data from the 16 image sets were interleaved (shifts of 1/4 pixel in two directions). Result forms high-density image of 'point' - PSF of the imaging method.

Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice¹ in 2 dimensions
- Implement Echo-Planar Spectroscopy² in 3rd dimension.
 - Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution³).
 - 1. Panych et al. Magn Reson Med 2005; 54(1):159-68.
 - 2. Posse et al. Magn Reson Med 1995; 33(1):34-40.
 - 3. Irani and Peleg. 10th Int Conf Pattern Recogn 1990; 2:115-120.

Echo-Planar Spectroscopic Imaging (EPSI)

A method that encodes 1 dimension in a single shot and <u>increases speed</u> significantly

Posse et al. Magn Reson Med 1995; 33(1):34-40.

PRESS compared to EPSI with PSF-Choice

PRESS vs EPSI with PSF-Choice

FOV = 24x12 cm

Acquisition Matrix PRESS: 32x16x512 - <u>1 average</u> EPSI & PSF-Choice: 32x16x512 - <u>32 averages</u>

TE/TR = 85/1000 msec

Total acquisition time: 32x16 shots X 1 sec = 8 minutes 32 seconds (for <u>both</u> methods)

Enhancements to Standard MR Spectroscopic Imaging (MRSI)

- Implement PSF-Choice¹ in 2 dimensions
- Implement Echo-Planar Spectroscopy² in 3rd dimension.
- Acquire multiple low-resolution data sets and apply a resolution-enhancement algorithm (super-resolution³).
 - 1. Panych et al. Magn Reson Med 2005; 54(1):159-68.
 - 2. Posse et al. Magn Reson Med 1995; 33(1):34-40.
 - 3. Irani and Peleg. 10th Int Conf Pattern Recogn 1990; 2:115-120.

Resolution Enhancement (or 'super resolution')

- Combine multiple low-resolution datasets with sub-pixel shifts to enhance resolution.
- PSF-Choice is suitable for resolution enhancement approaches because the PSF contains higher spatial frequency information.
- Standard Fourier encoded data contains no additional spatial frequency information.

Irani and Peleg. 10th Int Conf Pattern Recogn 1990; 2:115-120.

Resolution Enhancement: Algorithm

Irani and Peleg. 10th Int Conf Pattern Recogn 1990; 2:115-120.

Resolution Enhancement: Phantom Results

Standard Phase Encoded MRSI datasets: H²O images.

PSF-Choice Encoded MRSI datasets: H²O images.

Data was acquired using GE 'resolution' phantom. Four acquisitions with 1/2 pixel shifts in x and y.

Resolution Enhancement: With noisy MRSI data

FOV = 80mm³ Press voxel = cube; 20mm³

Acquisition matrix = 8x8x8

Four acquisitions: Half pixel shifts in two directions, reconstructed and combined using super-resolution algorithm.

PSF-Choic	e Encoding (Citi	rate Image)
		20 mm
Raw Data		With Enhancement
Standard I	Phase Encoding ((Citrate Image)
Standard I	Phase Encoding ((Citrate Image)
Standard I	Phase Encoding	(Citrate Image)
Standard I	Phase Encoding	(Citrate Image)
Standard I	Phase Encoding	(Citrate Image)

Citrate image: 2.32 to 2.56 ppm.

Data acquired using 'prostate' phantom (choline, creatine and citrate solution).

Summary and Conclusions

- **PSF-Choice encoding gives spectroscopic images** free of truncation artifact.
- Use of EPSI to encode one direction reduces acquisition time: e.g., 24x12x8 matrix, 4 averages in 6min 24sec (TR=1sec).
- By repeating low resolution acquisitions with 1/2 pixel shifts in the PSF-Choice directions (in place of 4 simple averages), resolution enhancement methods can be applied.
- Low-resolution, averaged data is still available if high-resolution result is too noisy.

Acknowledgeme nts

Acknowledgements

The authors wish to acknowledge the support of NIH R21/R33-CA110092 and NIH P41-RR019703.